Module Minsep

module Minsep: sig .. end
Minimal separators of a graph

Based on the article: Generating all the minimal separators of a graph. by A. Berry, J.-P. Bordat and O.Cogis http://www.isima.fr/berry/generating.html

A set S of vertices is a minimal separator if it exists 2 distinct connected components C and D in G \ S such that each vertex of S has a successor in C and D.


module type G = sig .. end
Minimal signature for computing the minimal separators
module type MINSEP = sig .. end
module P: 
functor (G : sig
include Minsep.G
val remove_vertex : t -> V.t -> t
end) -> MINSEP with module G = G
Implementation for a persistent graph
module I: 
functor (G : sig
include Minsep.G
module Mark: Sig.MARK  with type graph = t and type vertex = V.t
end) -> MINSEP with module G = G
Implementation for an imperative graph.