functor (G : I) ->
sig
type t = G.t
type vertex = G.V.t
module S :
sig
type elt = vertex
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val of_list : elt list -> t
end
type idom = vertex -> vertex
type idoms = vertex -> vertex -> bool
type dom_tree = vertex -> vertex list
type dominators = vertex -> vertex list
type dom = vertex -> vertex -> bool
type sdom = vertex -> vertex -> bool
type dom_frontier = vertex -> vertex list
val compute_idom : t -> vertex -> vertex -> vertex
val dominators_to_dom : ('a -> S.t) -> vertex -> 'a -> bool
val dominators_to_sdom : (vertex -> S.t) -> vertex -> vertex -> bool
val dom_to_sdom : (vertex -> vertex -> bool) -> vertex -> vertex -> bool
val dominators_to_sdominators : (vertex -> S.t) -> vertex -> S.t
val dominators_to_idoms : (vertex -> S.t) -> vertex -> vertex -> bool
val dominators_to_dom_tree :
t ->
?pred:(t -> vertex -> vertex list) -> (vertex -> S.t) -> vertex -> S.t
val idom_to_dom_tree : t -> (vertex -> vertex) -> vertex -> vertex list
val idom_to_idoms : idom -> vertex -> vertex -> bool
val compute_dom_frontier : t -> dom_tree -> idom -> vertex -> vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom : (vertex -> vertex) -> vertex -> vertex -> bool
type dom_graph = unit -> t
type dom_functions = {
idom : idom;
idoms : idoms;
dom_tree : dom_tree;
dominators : dominators;
dom : dom;
sdom : sdom;
dom_frontier : dom_frontier;
dom_graph : Dominator.Make_graph.dom_graph;
}
val compute_dom_graph : Dominator.G.t -> dom_tree -> Dominator.G.t
val compute_all :
Dominator.G.t -> vertex -> Dominator.Make_graph.dom_functions
end